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Delta wings with conically subsonic cones-bodies mounted on their compressive 
side are analysed in the hypersonic small disturbance regime. The weakly three- 
dimensional conditions associated with slender parabolic Mach cones are used 
to validate a linearized rotational approximation of the flow field. A combined 
integral-series representation is obtained for the pressure distribution between 
the wing-body and shock wave for arbitrary body cross-sections, and is specialized 
to give analytical formulae for arbitrary-order polynomial transversal contours. 
Numerical results are presented for wedge, parabolic and higher order cross- 
sections illustrating the dominant character of the cross-flow stagnation singu- 
larity associated with sharp wing-body intersections having a finite slope dis- 
continuity. It is shown that the pressure has a logarithmic infinity at this second- 
ary leading edge, as in corresponding Prandtl-Glauert irrotational flows. The 
relation of this finding to Lighthill’s theorem on cross-stream vorticity is dis- 
cussed. Other features of the pressure field are considered with particular em- 
phasis on their relationship to a recently derived area rule for such configurations, 
and possibilities for favourable interference. 

1. Introduction 
An important aspect in the evolution of the new hypersonic vehicles is the 

effect of wing-body interference on surface pressures and aerodynamic eaciency 
(LID). Our understanding of these nonlinear interactions is quite limited, 
particularly for three-dimensional flows. These facts have motivated extensive 
application of recent advances in computer technology towards the development 
of appropriate numerical algorithms. Babaev (1963), Voskresenskii (1968) and 
South & Klunker (1969) have treated hypersonic conical flows by steepest- 
descent techniques and the method of lines. Difference methods for hyperbolic 
systems in three dimensions have recently been employed to handle non-conical 
geometries (see, for example, Kutler, Lomax & Warming 1972). There have also 
been investigations such as those by Gunness, Knight & D’Sylva (1972) using 
simplified numerical formulations based on the hypersonic small disturbance 
theory (HSDT) of Van Dyke (1954). The utility of these approaches will depend 
in part on overcoming numerical stability problems near sharp leading edges and 
shock waves, as well as the attainment of short run times. In certain applica- 
tions, extensive man-machine interaction is required to handle such instabilities. 
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674 N .  Malrnuth 

Parallel analytic development has shed light on basic physical mechanisms, 
parametric dependencies and similitudes, and offers the possibility of con- 
ditioning the numerical approaches. The simplifications afforded by the HSDT 
approximation have thus far not been significant enough to lead to many three- 
dimensional flow solutions of general utility. Newtonian and thin shock-layer 
theory, which has been shown by Cole (1957) and Hayes & Probstein (1966) 
to be a subset of HSDT, has been explored for this purpose. Messiter (1963), 
Cole & Brainerd (1962), Woods (1970), Gonor, Lapygin & Ostapenko (1970), 
Squire (1968) and Antonov & Hayes (1966), as well as subsequent investigators, 
have provided valuable insight into compressive flows occurring a t  the high 
incidence-Mach number combinations associated with Newtonian or thin-shock- 
layer approximations. 

Cruise applications frequently dictate lower incidence angles for which the 
thin-shock-layer assumptions are not valid. In  this regime, the flow field may be 
considered weakly three-dimensional for a wide class of practically interesting 
cases. This realization provides the basis of a systematic approximation scheme 
embodied in a linearized version of HSDT (LHSDT) which has been used by 
Malmuth (1966), Ter-Minassiants (1966) and Hui (1971) to treat planar delta 
wings of moderate aspect ratio, Hayes’ unsteady analogy implies a close simi- 
larity of these three-dimensional pressure fields to  those encountered in weak 
diffraction of strong shocks, which has been investigated by Lighthill (1950) 
and his successors. There is some evidence that geometries can be treated by 
this theory that are of a higher degree of three-dimensionality than would a t  
first seem reasonable from its inherent assumptions. 

A recent application of LHSDT has led to the development of an area rule for 
delta wing bodies given by Malmuth (1  97 1) and extended to lower Mach numbers 
by Hui (1972). This rule states that the reduction in LID due to the addition of a 
conically subsonic cone of arbitrary cross-section on the windward side of a 
delta wing depends only on the body’s cross-sectional area and not its shape. 
Detailed pressure distributions were not required to prove the rule, since it 
could be established from integral theorems derived from the boundary-value 
problem for the perturbation pressure. 

In  the analysis of Malmuth (1971), a competition between favourable shock 
diffraction and body pressure drag was suggested to be the controlling mechanism 
for the body-induced decrement 7 in the wing-alone inviscid LID. It was dis- 
covered that, for fixed specific heat ratio y, the quantity 7 is a monotonic decreas- 
ing function of the hypersonic similarity parameter H ,  where, referring to figure 
1 (a) ,  H = l /Mi  S2, M, = free-stream Mach number and 6 = angle of attack, 
and that there is a critical value of H for which addition of volume actually 
gives negative values of 7. Thus, a kind of favourable interference occurs which 
differs somewhat from that encountered by Chernyi (1961) and Cole & Aroesty 
(1965) in connexion with two-dimensional hypersonic airfoils of the type shown 
in figure 1 (b) .  It was shown by these workers that there are classes of profiles 
that produce reflexions with the shock wave such that suction forces on forwardly 
inclined surfaces occur, resulting in an interference thrust as shown in figure 1 (b) .  
I n  the conical three-dimensional problem, there is no such reflexion process 
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FIGURE 1. (a) Wing-body geometry showing free-stream velocity U ,  Mach number M m  
(Cartesian axes Z, g, a),  sweepback angle of leading edge x and body thickness function P. 
(b )  Two-dimensional hypersonic airfoil section with suction on favourably inclined surfaces. 
- , suction zone ; i- , compression zone ; T = net interference thrust. 

inside the parabolic Mach cone shown in figure 1 (a). The benefits at small values 
of H are due to the changing body portion of the net pressure field of the wing- 
body combination. Although some insight into this mechanism can be obtained 
from the relevant integral theorems, a thorough understanding requires the 
evaluation of the details of the pressure distribution. This information is also 
necessary for other aerodynamic and structural reasons such as boundary- 
layer, heat-transfer and flutter calculations. 

In  this paper, analytic solutions are provided for the pressures over a wide 
class of delta wing-bodies in hypersonic flow. The boundary-value problem ana- 
lysed here is a generalization of that treated in Malmuth (1966), which is associ- 
ated with a planar delta wing at infinite Mach number. In  that analysis, an eigen- 
function expansion was derived for the pressure field between the wing and shock 
wave. The eigenfunction coefficients were given by a homogeneous linear first- 
order difference equation. It will be seen that the analogous difference equations 
for wing-bodies at  finite Mach number are of second order and inhomogeneous. 
A major thrust of this paper is the derivation of properties of the pressure field 
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from the solution of these difference equations. In contrast to Malmuth (1966) 
explicit solutions are obtained for infinite Mach number. For finite values of this 
parameter, a Green's matrix is derived from which the influence of general 
conical volume distributions can be readily calculated. 

From these results, various features are identified which influence the division 
of the pressure field between the wing and body. An example of such a property 
is the behaviour of sharp wing-body intersections as compared with rounded 
junctions. Numerical results are presented for special shapes illustrating these 
effects as well as the influence of Mach number and specific heat ratio. 

2. Formulation 

1 (a) is treated. The equation of the wing-body is 

where c is a normalized sound speed, to be defined subsequently. The body thick- 
ness function P is assumed to have bounded but not necessarily continuous 
first derivatives with respect to Z on the interval 0 < Z < 1. In  addition, P is 
assumed to be zero outside this range. For the LHSDT limit, 

H fixed, 6,e  -+ 0, 

the asymptotic expansion for the pressure H is 

where pm and U are the free-stream density and velocity respectively, and 

In the following discussion, the delta wing-body configuration shown in figure 

Y - ( E / c )  F(Z)  = 0, Y = ij/c 62, Z E 2/c 65, e E 6 tan x, 

[(W, y,z; N m ,  6, x, Y) - Pml/62pm u2 = po[1 + ep(Z, y ;  H ,  741 + 0(a2), 

p ,  = O f 1  = t ( ~ + 1 ) + { [ & ( y + 1 ) ] 2 + H ) Q .  
If Y = tanh Q, 2 = sech Q sinp and Y,  = e /c ,  c = O[O + a(? + l)], the boundary- 

[$ +$] p = 0 in the region R :  0 < Q < a, = tanh-lY,, 0 < ,u tn,  ( l a )  

(1b)  

(IC) 

ap(p, o ) p ~  = = - Y,-I s i n 2 p ~ y z ) ,  (1 4 

value problem for the perturbation pressure p in the Q, plane is 

aP(0, W,u = p ( h - ,  0) = 0, 

[g + (a, sinzp + E ~ )  cosecp seep - p = 0 on 
aP "1 = c8, 

C1 = - 2C2[l - (Y + 1)/4(e + i)], C2 = Q(coth Q,), 

The region R corresponds to the portion of the flow bounded by the parabolic 
Mach cone, wing-body and shock wave. 

3. Solution 
With quantities associated with the planar delta wing (P = 0)  denoted by 

superscript zero, the perturbation pressure can be decomposed into two com- 
ponents: 

I, = + Ap, 
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where Ap is the body-induced increment in pressure. It can be shown that this 
represents a decomposition of ( 1  a-e) into a problem for p(O), corresponding to a 
flat-plate delta wing, and another for Ap7 associated with a body on an upswept 
wing. The geometric features of the wing and body in the component problems 
are identical to those in the composite wing-body problem for p .  

By a generalization of the analysis of Malmuth (1966), the solution of ( 1  u-e) 
is 

2 ( 2 4  
cos (2n + 1)  p cosh (2n + 1) r~ p(0) = XAg) 

0 2n+ 1 
4) 

'OS (2n+ ')' [AA, cosh (2n + 1 )  v+B, sinh (2n + 1 )  vI7 ( 2 b )  2n+1 

AAn E A,-Af), Bn = $ ( p ) c o ~ ( 2 n + l ) p d , ~ .  (2c, 4 

To facilitate the determination of AA,, an infinite Green's matrix k can be 
defined such that 

m 

AA, = x k n m B m .  
m=O 

Equations ( 1  c)  and ( 1  e )  are used to obtain the following recursion relations for 
the A:) and knm: 

( 3 4  
( 3 b )  

IM,[A(,o)] = 0, 
~ ; A ~ O ) + C ~ A ~ ~ )  = 0, 

n 3 0, 

where Snm is the Kronecker delta and 

c, = cosh ncr,, s, = sinh no-*, 

M, = an E2 + b, E + cz7 N, = an E2 + f, E + g,, Ey, t yn+l, 
4un S2n+6 - C1 c2n+5, bm (G2 f iC1) C2n+3, - 4cz S2n+l + C2n+J., 

- 4an c2n+5 -C1S2n+5, -fn (C2 + 4%) s2n+3, 4gn C2n+l + C1S2n+l, 

4bh = s3 - c1c3, c;, = (Cz + &) c1 - is1, 4f;, = cs - Z1SB, g; = (C2 +$El)  s1 - $c1. 

The difference equations ( 3 u - - )  may be more easily solved if the 'conservation' 
conditions ( 3  c )  and ( 3  f) are replaced by initial conditions. This can be achieved 
by use of integral theorems developed in Malmuth (1971). Defining the relevant 
spanwise pressure integrals as, 

psechcrcospdp, 
[I - Y'lt 

S O  
P ( Y )  = 
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the integral theorems are 

P(0) = 2c2/(y + I) a, ( 4 4  

AP P-P(O) = [I - (a-l+ Y)/Y,] V ,  ( 4 b )  

a = - * c [ q y +  1 ) + ( 2 e - y + 3 ) / 2 e ( e +  I)], 

FdZ = body volume. 

where 

Integration of ( 2  a )  and ( 2  b )  and comparison with ( 4  a )  and (4  b )  gives 

At  M, = 00, explicit solutions for A(nO) and k,, are facilitated since M, and N, have 
a common factor, and the order of the equations may thereby be reduced. In 

A p  = 8c2/n(y + 1) a, k,, = (a+- y,) &om. ( 3 c ’ , f  ’) 

particular7 4Mn = (E  + 1) [Ea, -/?,I, ax, = (E  + 1) [Ey, + an], 
a, = azn+1+ Czczn+l, 

- Y n  = CZn+l +C2~2n+1, 

Pn = Szn+l- %CZn+l, 

an = CZn+l-GS2n+l, 

so that (E  +pn) A:’ = 0, 

(E  +pn) knm = (Wn+lE + o n )  an,, 

where p n  (FzCZn+l-S2n+l)/(F2C2n+3 +S2n+d, 
- 

-0, = (CZn+l+ ~ ~ n + l ) / ( ~ Z n + l  +GC2n+J, 

o n  (Czn+l -GS2n+l)l(GC2n+3 + S2n+3)- 

Noting that (5a)  includes ( 3 b ) ,  and ( 5 b )  includes ( 3 e ) ,  the variation of parameters 
method for linear difference equations yields the following solutions: 

n- 1 
A(,O)/AAo) = R n -  = (-pk), R, = 1, 

0 

where 

and the second term in (6 b )  vanishes for n = 0. 

It should be noted that the knm are independent of the body shape and depend 
only on H and y .  Accordingly, they can be calculated once and for all, and used 
with ( 2 e )  to evaluate the ‘induced’ pressure of volume on the delta wing. From 
( 6 b ) ,  it is demonstrated that k is a triangular matrix, with its row elements a 
rapidly decreasing sequence downward. This property holds for arbitrary H ,  
and gives a rapidly converging sum for the AAn in ( 2 e ) .  

4. Cross-flow stagnation singularities 
To isolate singular elements, ( 2  b )  is rewritten using Kummer’s transformation 

03 

where 8 ~ B B , e - ( 2 ~ + ~ ~ ~ [ c o s ( 2 n + l ) , u ] / ( 2 n + 1 ) .  (7) 
0 
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From ( 2 e )  and ( 3 4 ,  k,, + S,, and AA,+ B, are O(e-.") as n --f co, where 
CI. > 2gs. Thus, the first series in (2b ' )  will be rapidly convergent even for 
B, = O( I )  as n + co. This case occurs if F' has a h i t e  jump discontinuity on 
0 < 2 6 1, and gives logarithmically slow convergence for X(0, p). To avoid this 
difficulty, an integral representation for (7) is used. This can be easily obtained 
on substitution of ( 2  d )  and interchanging summation and integration, which is 
justifiable by uniformity of convergence for (T + 0. The evaluation of lim X(v, p) 

thereby corresponds to an Euler summation. From well-known summation 
identities, 

u-to 

J O  
where 

( 8 b )  

Specializing, the surface distribution of body -induced incremental pressure is 
thus 

Ap(,u, 0) = $(p') [tanh-1 cos (p +p') + tanh-l cos (p -p')] dp' 

+ $ (AA, + B,) [cos ( 2 n  + 1) p]/(  2 n  + 1). (9) 

Tofixtheideas,considera classofFfunctionssuchthatF(2) = + ( 2 ) H ( Z o - 2 ) ,  
where +(Z0) = 0,2,  = sinPo, H is the Heaviside function and +(Z) is regular on 
0 < 2 6 2, < 1. It is of interest to establish the singular nature of the pressure 
field near the resulting sharp wing-body ridge line a t  2,. Prom (1  d) ,  

(10) 
where S(x) is the Dirac delta function and $-'(Z0-) E limV(Z,-e). To treat the 

first term on the left-hand side of (lo), define the surface Green's function as 

0 

qw) = - y,-"z: secPo~cuo -PI @' (ZO-) -22v(z) H(P0 -PI], 

€+O 

From (2b ' ) ,  ( 2 4  and (Sa )  it follows that 

x [cosh ( 2 n  + 1 )  r~ cos ( 2 n  + I )  p]/(2n + 1) .  ( 1 2 a )  

( 1 2 b )  

If $"(Z) = 0 (the case of a transverse wedge), (10) and (11) yield 

APmodge = -2; secPoG(Pu, g; Po)/ys. 
It is evident from the rapid convergence of the second term in ( 1 2 a )  that the 
singular behaviour of Ap near the point (0 ,  po) is due t o  G,, which can be written 
in terms of the complex variable x = p + ig as 

1 1 
G,(a,pu;p,) = -In ltan&(z-p0)tStn8(.z+po)[ 2 -In Ix-p,~ as x +po. 

7T 7T 

( 1 3 4  
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In LHSDT, the vorticity is the same order as the pressure perturbations. 
However, (13a) shows a qualitative resemblance to the behaviour of geometri- 
cally similar irrotational Prandtl-Glauert flows at lower Mach numbers, studied 
extensively by Jones & Cohen (1957). Lighthill (1949) has shown that the pressure 
field is unaffected by cross-stream vorticity in this regime. However, it remains 
to be shownthat the case under consideration fulfills the conditions of his theorem. 

The second factor in the argument of the logarithm of (1 3 a )  represents an image 
effect of the ‘source7 singularity comprising the first, and is required to satisfy 
the second condition in ( l b ) .  Accordingly, if po = in, the singular behaviour 
of the pressure becomes that of a ‘doublet’ at z = in: 

-rGs * ( x -  h ) - 1  2 as z --f &r. (13b) 

For the case of an arbitrary polynomial cross-section 

N 

0 
$ = zanzn 

with the previous restrictions 
B, = BLs) + BLR,R’, 

Of the many possible representations for the integral (14e) the following are 
the most advantageous for computation: 

+[sin (2(p  - n- k) - 1) p]/[2(13 - n- k )  - 11) + (sin (2% + 1)p) / (2n+ 1)  , 

P ’ 0, (14d  
(14h) 

I 

In,,,-, - - - q4-P) { C’ ( -  l)P+k--l ( 2p; I) [{(cos 2(p - k +%)/A) - 1]/2(p - k + n) 

(3 
IOI = t(l - cos 2p),  

23-1 

k = O  

+ [cos (2(p  - k - n - 1)p) - 1]/2(p - k - n - l)]] (n > 0) ,  (14i) 

where (;) = (a!)/(a-b)!b!7 the binomial coefficient, p = 1, 2, 3 ..., and the 

prime on the sum in (14i) signifies that the last two terms are to be omitted when- 
ever the denominator vanishes, i.e. p = k + n + 1. 
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-0.8819 0 0 0 0 O. . .  
0.3713 - 9.9747 0 0 0 0 

- 0.03861 0.08021 - 0.9948 0 0 0 
0.002748 - 0.005708 0.01654 - 0.9989 0 0 

- 0.000 177 1 0'0003680 - 0.001067 0.003380 - 0.9998 0 
1.1179 x lop5 -2.322 x 10-5 6.729 x -0.0002133 0.0006891 - 1  

TABLE 1. Structure of matrix k;  H = 0, y = 1 4  

- 0.9871 0 0 0 O . . .  
0.05465 - 0.9993 0 0 0 
0.01781 0.002944 - 1  0 0 

- 0.002299 0.0009632 0.0001576 - 1  0 
2.540 x 10-4 - 1.224 x 5.158 x 8.435 x 10" - 1  

TABLE 2. Structure of matrix k; H = 1, y = 1.4 

- 0.9943 0 0. O . . .  
0.002915 - 1  0 0 
0.0001335 2.281 x - 1  0 

- 2.216 x lop5 1.044 x 10-5 1.784 x lo-' - 1  

TABLE 3. Structure of matrix k; H = 10, y = 1.4. 

5. Results and discussion 
Tables 1, 2 and 3 show the structure of the matrix k for H = 0, 1 and 10, and 

y = 1-4. Consistent with previous observations, the effect of the higher body 
cross-sectional area moments on the volume-induced interference pressure A p  
appears to be small. An increasing volume effect on span loading can be shown for 
increasing bow shock strength, since ko,,/yY increases with decreasing H .  How 
the actual induced pressures Ap compare with the wing-alone component p(O) 
will now be discussed in connexion with specific cross-sectional shapes. 

The singular behaviour associated with a sharp, conically subsonic, wing- 
body juncture is most clearly evaluated from the wedge cross-section. A typical 
example selected for illustration of the effect is 

F = (4 - 2) H(+ - 2) H ( Z ) ,  

for which (12b) gives Ap directly. Figure 2 (a) shows the surface pressure distribu- 
tion associated with (15) (on Y = v = 0) for H = 1 and y = 1.4. As in the infinite 
Mach number case, studied in Malmuth (1966), the wing-alone perturbation 
pressure p(O) demonstrates a monotonic decay towards the centre-line, 2 = 0. 
This smooth expansion is a general feature of the flow field for all H and is 
associated with turning of the streamlines away from the line of symmetry 
resulting from the bow shock's compression of the component of the free stream 
normal to the wing leading edge. The streamline pattern associated with this. 
conically invariant expansion process can be easily visualized, since the perturba- 
tion in the free-stream direction is negligible to the order of the approximations, 
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z 
FIGURES 2(a, b ) .  For legend see page 683. 
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Orientation of drag D 
and interference thrust 
T a t  a fixed lift L 

FIGURE 2 (a). Surface spanwise pressure distributions. p(0) = basic delta-wing perturbation 
pressure, Ap = body-induced increment of perturbation pressure, p = resultant perturba- 
tion pressure = p@’+ Ap,  @ = body thickness function, 2 = physical spanwise conical co- 
ordinate, H = 1, y = 1.4, @ = 8-2. ( b )  Surface spanwise pressure distributions. H = 1, 
y = 1.4, ~,h  = - ++Z. (c) Wedge and parabolic concave delta wing bodies. 

and the sidewash varies smoothly from its positive value at  the shock to zero, 
required by symmetry, at the centre-line. The behaviour of the volume-induced 
effect Ap demonstrates that the compressive nature of the singularity a t  
2 = 2, = 8 is felt immediately downstream of the Mach cone ,u = owing to 
the subsonic nature of the cross-flow cone field. Because the secondary compres- 
sion near Z ,  is qualitatively similar to that just discussed in connexion with the 
leading edge, a similar recovery phenomenon is exhibited, in which Ap decays 
from the logarithmic singularity given by (13 b )  near 2, to a finite positive value 
at Z = 0. It should be noted that the ridge-line slope discontinuity a t  this loca- 
tion associated with the last factor on the left-hand side of (15) has no effect, 
since its centre-line orientation prevents its modification of the sidewash field. 
This is confirmed by the presence of the sinz,u factor in (1 d). 

For the associated ‘concave’ body in which the sign of F in (15) is reversed, 
the only change i n p  is a corresponding sign change for Ap.  The corresponding net 
pressure is shown in figure 2 (6).  It is obvious that there is an interesting trade off 
here between lost volume and attendant interference thrust, for various H and 
y.  For purposes of visualization of the implied geometries, sketches of wedge 
and parabolic concave wing bodies are shown in figure 2 (c). 

In  figure 3, the behaviour of the pressure field over the wing-edge body is shown. 
The rapid attenuation of the leading-edge singularity is quite evident from these 
distributions. 

The effect of increased shock strength at  lower H is typified in figure 4. It is 
evident that the body contribution represents a much larger fraction of the net 
pressure field than at  lower Mach number and incidence. This is consistent with 
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z 
FIGURE 3. Vertical variation of pressure distributions. cr = transformed vertical conical 

oo-ordinate, Y = physical vertical conical co-ordinate. H = 0, y = 1.4,$ = & - 2. 

FIG~JRE 4. Surface spanwise pressure distributions. H = 0, y = 1.4, $ = 4-2. 
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FIGURE 5. Effect of y on surface pressures. 

a ‘figure: of merit’ study by Malmuth (1971) in which a benefit in wing-alone 
LID could be achieved with volume addition for sufficiently low values of H .  
Figure 5 shows the effect of the specific heat ratio y on this apportionment. 

Pressure distributions for higher order profiles such as those with N = 2 
and 3 in (14a) are indicated in figures 6-8 for the cases in which @ has no zeros 
on 0 < Z 6 2,. The quantity Ap exhibits the same qualitative features as those 
associated with zero transverse curvature, N = 1.t These characteristics are 
dominated by the stagnation singularity a t  Z,, the superposed wing-alone ex- 
pansion field, the centre-line recovery from cross-flow stagnation conditions. 
rapid attenuation of the singularity with elevation and increasing Ap/pn with 
H + O .  

In  contrast to the case N = 1, for N >  1, B,(R) $: 0. For the cases considered. 
acceptable convergence in ( 2 b ’ )  required 50 terms in the summation. Procedures 
for acceleration of convergence were not implemented owing to the facility of the 
computational algorithm. Typical cases were accessible by digital equipment 
within seconds. 

Since sharp ridge lines are structurally untenable, it is of interest to establish 
modifications in the loading associated with ‘blended’ wing-bodies with F‘ 
continuous at  2,. For this purpose, the quadratic ( N  = 2) and cubic ( N  = 3) 
profiles shown in figure 9 lead to the indicated pressure distributions. As for 
N = 1, no singularity occurs owing to the kink at 2 = 0 for the quadratic, or 
any othor polynomial with F’(0) =+ 0. This fact is justified in the same manner as 

t The behaviour of ap/aZ at the ‘ triple point ’ (in, a,) is discussed in the appendix. 
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FIGURE 6. Surface spanwise pressure distributions. H = 1, y = 1.4, $ = &-Zz. 
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z 
FIGURE 7 .  Vertical variation of pressure distributions. H = 1, y = 1.4, $ 22. 
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z 
FIGURE 8. Surface spanwise pressure distributions. y = 1.4. (a) U = 0, @ = $-Zz. 

( b )  H = 1, = . ? 3 - - 2 2 - 2 2 3 .  

before. It is evident that the logarithmic singularity has been removed by the 
blending, but there is considerable compression near the wing-body junction 
region which is relieved by the previously described expansion process towards 
the centre-line. 

Interesting effects occur for the reflex profile shown in figure 10, for which 

II. = ~ - 2 2 + 2 3 + 2 4 .  

I n  this case, $ has a zero on 0 < 2 < 8, and the previous observation regarding 
the dominant effect of the leading-edge singularity no longer holds. This is evi- 
dent from the compression occurring in the region 2, < 2 < l which is due to 



688 

-0.6 

N .  Mdmuth 

- - - 

I I I I I 1 I 1 I 



Pressure jields over hypersonic wing-bodies at moderate incidence 689 

0.10, I 1 I I I I I I I 1 

0.08 

0.06 

0.04 

0.02 

0 

-0.02 

- 0.04 

-0.06 

-0.08 I I I I I ,  I I I I I 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

2 

FIGURE 10. Surface spanwise pressure distributions. 
H = I ,  y = 1.4, llp = + c - 2 2 + 2 3 + 2 4 .  

the overwhelming effect of the central part of the body. The influence of this 
section far outweighs the logarithmic singularity everywhere, except in its 
immediate neighbourhood. 

6. Summary and conclusions 
It has been shown that a general class of conical wing-body interactions may 

be treated using an analogue of the rotational linearized theory of weakly dif- 
fracted strong shocks. A combined integral-series representation has been 
obtained for the pressure field over a slender, conically subsonic cone of arbi- 
trary cross-section on the compressive side of a delta wing, for the weakly three- 
dimensional hypersonic small disturbance limit discussed in Malmuth ( 1966). 
A logarithmic stagnation singularity associated with a finite slope discontinuity 
a t  the wing-body junction is exhibited by the pressure formula. General features 
of the pressure field are as follows. 

(i) The body component of the net pressure of the combination increases 
relative to the wing-alone portion for increasing Mach number and incidence. 

(ii) If the volume distribution is one signed, the pressure field is dominated by 
the secondary leading-edge singularity if the juncture is sharp. This behaviour is 
qualitatively similar to that predicted by irrotational Prandtl-Glauert theory a t  
lower Mach numbers, suggesting the relevance of Lighthill’s theorem on the in- 
dependence of irrotational pressure fields to imposed cross-stream vorticity. 
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(iii) The influence of the stagnation singularity attenuates rapidly with eleva- 

(iv) Concave wing-bodies may produce significant interference thrust. 
(v) Concave bodies give an equal and opposite contribution to net wing- 

body pressure as compared with convex ones of the same shape. 
(vi) ‘Blended ’ wing-body combinations round off the logarithmic singularity 

occurring with sharp junctures. There is still considerable overshoot in the pres- 
sure, with a substantial decay near the centre-line owing to symmetry and the 
superposed expansion field of the wing. 

It is conjectured that many of these conclusions will apply qualitatively to 
thicker delta-wing mounted bodies in the HSDT regime. 

tion above the wing. 
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Appendix 
The singular nature of the ‘triple point’ intersection of the conically sub- 

sonic and supersonic limbs of the shock Y = Y,  with the Mach cone p = in 
has been the subject of some previous investigations. Various workers have 
treated ‘corner boundary layers’ within the framework of thin shock layer and 
second-order irrotational linearized theories. In  this paper, the pressure varia- 
tions shown in the figures suggest similar singularities. In  particular, it  appears 
that (afla.2) -+ -a as ,u t $71 for 0 < a < gs if H = 0, where f = p(O), Ap or p .  
Moreover if H =+ 0, the same behaviour holds, except at  the triple point 
(&r, as), where af/aZ is bounded (cf. figure 7).  These facts will now be cor- 
roborated from the properties of a harmonic Taylor expansion about the triple 
point which is written as 

m m  

f = z z anmEnr#lm, (A 1) 
n=O m=O 

where g = p-$n,  r#l = a-a,. 
From (lad) it can be shown that, for H += 0,  

-flu,, = Cr#l + (C3 - 3Eq2)/(C, + Z2) + . . . 
A [2(1-2/2,)]* (Y-X)/Z&+ ... (2, = sechrJ, 

so that 
8fla.Z N (1 - Z/ZM)-* as 2 -+ Z,, Y fixed, 0 < Y < Y,, (A2) 

0 < afla.2 < a as Z+.ZM, Y = Ys. 
Thus, the triple point is a saddle singularity for the isobars in the a, p plane. 

For H = 0, the triple point changes in character, since (1 c) reduces to 

Accordingly f ( 1 - ~ / ~ , ) *  
and 8fla.Z behaves as in (A2) on the closed interval 0 < Y < Ys, verifying the 
hypothesis. 
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